↳ ITRS
↳ ITRStoIDPProof
z
cond(TRUE, x, y) → +@z(1@z, minus(x, +@z(y, 1@z)))
cond(FALSE, x, y) → 0@z
minus(x, y) → cond(>=@z(x, +@z(y, 1@z)), x, y)
cond(TRUE, x0, x1)
cond(FALSE, x0, x1)
minus(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
cond(TRUE, x, y) → +@z(1@z, minus(x, +@z(y, 1@z)))
cond(FALSE, x, y) → 0@z
minus(x, y) → cond(>=@z(x, +@z(y, 1@z)), x, y)
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(>=@z(x[0], +@z(y[0], 1@z)) →* TRUE))
(1) -> (0), if ((+@z(y[1], 1@z) →* y[0])∧(x[1] →* x[0]))
cond(TRUE, x0, x1)
cond(FALSE, x0, x1)
minus(x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(>=@z(x[0], +@z(y[0], 1@z)) →* TRUE))
(1) -> (0), if ((+@z(y[1], 1@z) →* y[0])∧(x[1] →* x[0]))
cond(TRUE, x0, x1)
cond(FALSE, x0, x1)
minus(x0, x1)
(1) (MINUS(x[0], y[0])≥NonInfC∧MINUS(x[0], y[0])≥COND(>=@z(x[0], +@z(y[0], 1@z)), x[0], y[0])∧(UIncreasing(COND(>=@z(x[0], +@z(y[0], 1@z)), x[0], y[0])), ≥))
(2) ((UIncreasing(COND(>=@z(x[0], +@z(y[0], 1@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND(>=@z(x[0], +@z(y[0], 1@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND(>=@z(x[0], +@z(y[0], 1@z)), x[0], y[0])), ≥)∧0 ≥ 0)
(5) (0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND(>=@z(x[0], +@z(y[0], 1@z)), x[0], y[0])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(6) (>=@z(x[0], +@z(y[0], 1@z))=TRUE∧+@z(y[1], 1@z)=y[0]1∧x[1]=x[0]1∧y[0]=y[1]∧x[0]=x[1] ⇒ COND(TRUE, x[1], y[1])≥NonInfC∧COND(TRUE, x[1], y[1])≥MINUS(x[1], +@z(y[1], 1@z))∧(UIncreasing(MINUS(x[1], +@z(y[1], 1@z))), ≥))
(7) (>=@z(x[0], +@z(y[0], 1@z))=TRUE ⇒ COND(TRUE, x[0], y[0])≥NonInfC∧COND(TRUE, x[0], y[0])≥MINUS(x[0], +@z(y[0], 1@z))∧(UIncreasing(MINUS(x[1], +@z(y[1], 1@z))), ≥))
(8) (x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(MINUS(x[1], +@z(y[1], 1@z))), ≥)∧-1 + (-1)Bound + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0)
(9) (x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(MINUS(x[1], +@z(y[1], 1@z))), ≥)∧-1 + (-1)Bound + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0)
(10) (x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(MINUS(x[1], +@z(y[1], 1@z))), ≥)∧-1 + (-1)Bound + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0)
(11) (y[0] ≥ 0 ⇒ (UIncreasing(MINUS(x[1], +@z(y[1], 1@z))), ≥)∧(-1)Bound + y[0] ≥ 0∧0 ≥ 0)
(12) (y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(MINUS(x[1], +@z(y[1], 1@z))), ≥)∧(-1)Bound + y[0] ≥ 0∧0 ≥ 0)
(13) (y[0] ≥ 0∧x[0] ≥ 0 ⇒ (UIncreasing(MINUS(x[1], +@z(y[1], 1@z))), ≥)∧(-1)Bound + y[0] ≥ 0∧0 ≥ 0)
POL(>=@z(x1, x2)) = -1
POL(TRUE) = 1
POL(MINUS(x1, x2)) = -1 + (-1)x2 + x1
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(COND(x1, x2, x3)) = -1 + (-1)x3 + x2
POL(1@z) = 1
POL(undefined) = -1
COND(TRUE, x[1], y[1]) → MINUS(x[1], +@z(y[1], 1@z))
COND(TRUE, x[1], y[1]) → MINUS(x[1], +@z(y[1], 1@z))
MINUS(x[0], y[0]) → COND(>=@z(x[0], +@z(y[0], 1@z)), x[0], y[0])
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
cond(TRUE, x0, x1)
cond(FALSE, x0, x1)
minus(x0, x1)